

ZH-YX1210 12 路开入 10 路继电器输出 I0 控制模块

使用说明书(V2.1)

1、产品概述

本产品采用 32 位 ARM 处理器、数字输入量和数字输出量使用高速磁电隔离及光电耦隔离技术。宽电源供电,通讯输出 RS232、RS485、以太网接口可选,标准的 Modbus-RTU 通讯协议,可与 PLC、组态软件、文本显示器等进行组网,具有 10 路继电器输出、12 路开关量状态采集,开关量输入采用双向光电二极管,可支持共正或共负方式电平信号输入;具有通讯失联功能,通信电路采用防雷、抗干扰设计可广泛用于工业现场设备的信号控制。

本产品是 PCI IO 卡的完美替代品,IO 卡价格昂贵,且 PCI 插槽容易接触不良,安装、维护不方便、可靠性不高。本设备采用可靠性极高的串口通讯和隔离技术,确保工业环境中可靠工作。在电脑空间很紧凑的应用中,本方案可以将 IO 卡外置,节省空间,可安装于导轨式机箱/柜,或壁挂式墙体上.

2、主要型号

ZH-YX1210-14N—12 路开关量输入、10 路继电器输出、RS485/RS232 输出接口; **ZH-YX1210-34N**—12 路开关量输入、10 路继电器输出、RJ45 以太网输出接口;

3、主要技术指标与特点

- 3.1、主要技术指标
 - 输入开关类型 ----- 无源触点(干接点)或有源信号(湿接点)、计数脉冲等;
 - 双向光耦输入 ----- 常规型号采用共正单向光耦输入,加强版采用双向光耦输入,输入可共正或共负;
 - 无源触点耐压 ----- ≥30VDC;
 - 计数脉冲频率 ----- 常规频率范围 1 至 40kHz(计数功能需定制),可定制更高频率范围;
 - 继电器输出 ----- 10 路继电器输出 (常开触点,接点容量 AC250V*5A/DC30V*5A);
- 通讯接口 ----- RS485+RS232 或 TCP\IP 网口二种远距离总线中的一个;
- RS485 接口 ----- 最多可接 128 个终端(加强版可达 256 个), 传输距离达 1200 米, ±15KV ESD 保护;
- RS232 接口 ----- 传输距离 10米, ±15KV ESD 保护;
- RS485/232 ---- 有7种通讯速率与6种格式可选,详见 MODBUS 协议 06功能码定义表;
- TCPIP 网口 ----- 最大 100 米传输距离, 10/100Mbps,MDI/MDIX 交叉直接自动切换,可自由设定 TCP Server/TCP Client/UDP Server/UDP Client 等工作模式以及端口参数;
- 通讯协议 ----- 标准 Modbus-RTU 协议或 Modbus-TCP\IP 接口协议;
- 通讯与主电源隔离耐压---- 1500V DC;
- 最大功耗 ----- <6W;
- 辅助电源 ----- DC9-30V 宽电压输入;
- 工作温度 ----- -20℃~+60℃;
- 安装方式 ----- 导轨或螺钉安装方式;

3.2 产品特点

- 采用 32 位 ARM 处理器、运行稳定、高速、可靠;电源、通信口、输入输出接口抗干扰能力强;
- 10 路继电器每路最大切换电流达 5A,最大切换功率达 1250VA/150W。高速磁电隔离,抗干扰强,性能稳定、可靠性高;
- 开关量输入使用光电隔离,可接按键开关、继电器输出、磁性/接近开关、红外开关、有源信号输入等 干湿节点,针对有源输入性号,可与主电源分开供电,有效隔离;
- 状态指示灯丰富,具有开关量输出状态指示灯(内置)、开关量输入状态指示灯(内置)、通信指示灯(在显示面板上)、电源灯(在显示面板上)等;

网址: http://www.szzczh.cn

● 一键初始化,短路 Init-SET 触点,再上电复位,5 秒后,系统恢复出厂设置;

- 具有标准的隔离 RS232、RS485 接口,可定制网络口 100M/10M TCPIP 接口, CAN 接口;
- 内置 TTL 通信口,用于扩展 GSM/GRPS/CDMA/zigbee/wifi/蓝牙 等通信模块;
- 可通过协议设置继电器各种输出方式(如联动/闪动/脉冲输出等);
- 内置报警蜂鸣器,可以远程控制报警,提醒提示现场;
- 内置8位拨码开关,可按下表灵活设置各种功能:

拨码开关位	功能	详情
第8位	联动设置	置 ON 时,有 DI 输入,相应 DO 输出
第7位	通信失联复位	置 ON 时,通信失联 2 秒,关闭所有输出功能
		置 ON 时,采用 MODBU 协议可更改的软件设备地址;
第6位	设备地址设置	置非 ON 时, 开关第 5 位至第 1 位对应设置设备地址 bit4 至 bit0
		位 (bit7 至 bit5 默认为 0)
第5至1位	地址 bit4 至 bit0 位	第 6 位置非 ON 时,对应设备址址 bit4bit0

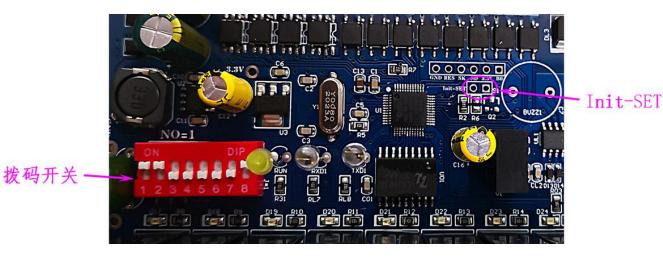


图 3.1 拨码开关与初始化触点位置

图 3.2 产品外观图

4、内部各部分电气布局图

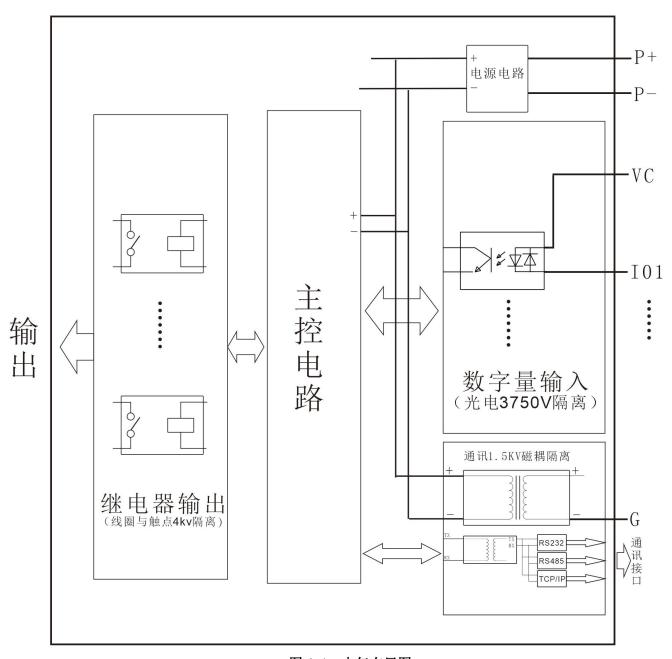



图 4.1 电气布局图

5、产品外形结构图

5.1、外形尺寸:

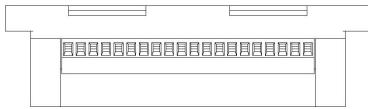


图 5.1、产品外观图(单位: mm)

6、引脚定义及接线参考图

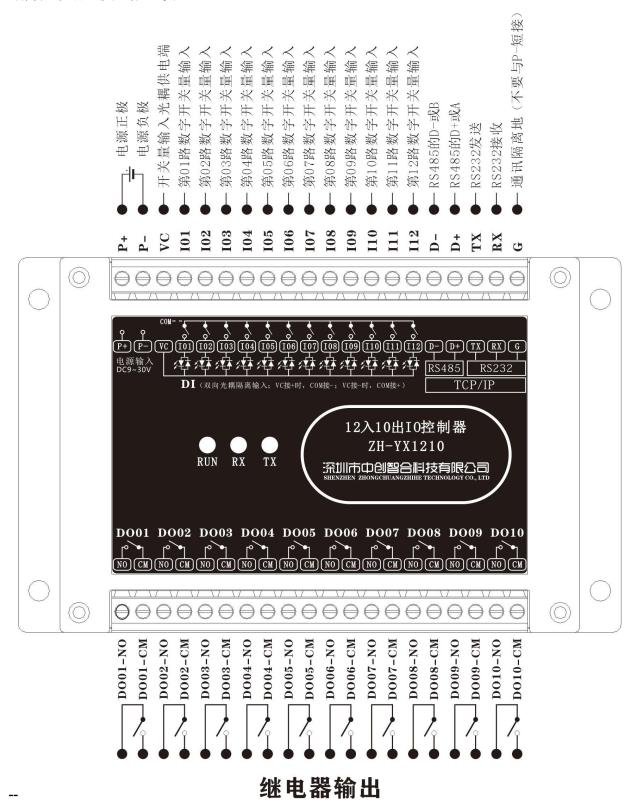


图 6.1 RS485 与 RS232 接口型端口定义参考图

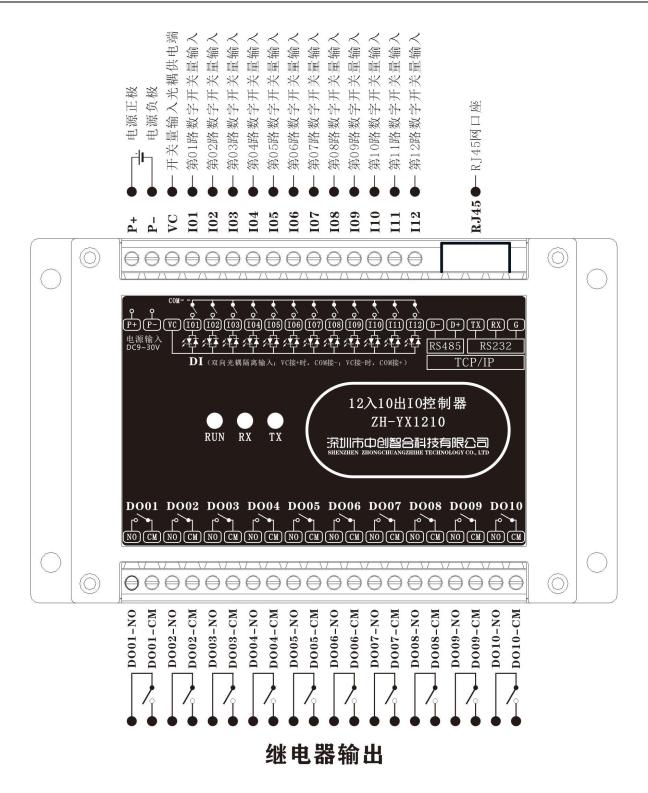
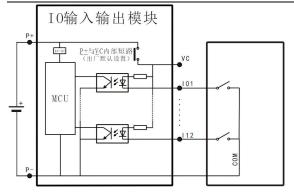
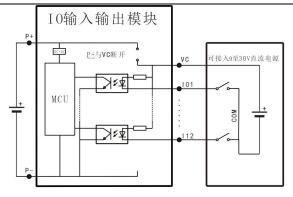
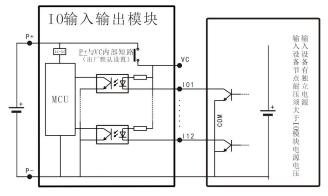
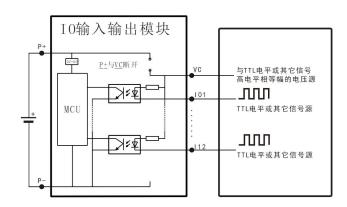




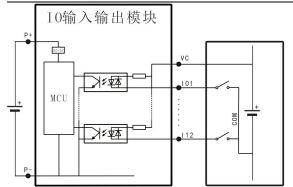
图 6.2 TCP/IP 网口接口型端口定义参考图




干触点输入常规接法(因干触点有源干扰低,无需接独立电源,适用大部分场合)

干触点输入高抗扰接法(如干触点距离较远或有可能耦合进干扰源,可采用此方法)

共地有源输入接法1--开漏、电源不隔离 (适用干扰小,输入设备单一的场合)


共地有源输入接法2--输入完全隔离 (适用干扰大,复杂环镜的场合,此接法需定制内部光耦限流电路)

网址: http://www.szzczh.cn

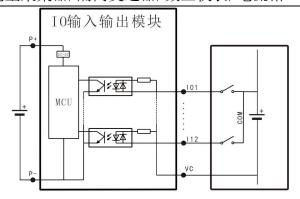
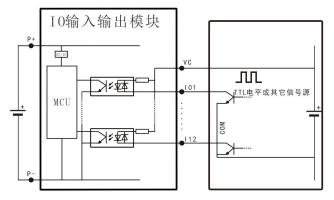
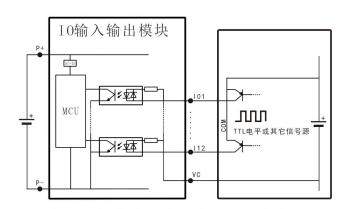

输入采用单向光耦隔离输入时, VC端子接内部P+或外部电源正

图 6.3 单向光耦型输入接法参考图




光耦共正极供电,干触点共负高抗扰接法 (如干扰源低,输入可以与P+\P-共用正负极)

光耦共负极供电,干触点共正高抗扰接法 (如干扰源低,输入可以与P+\P-共用正负极)

光耦共正极供电,有源输入共负接法(如于扰源低,输入可以与P+\P-共用正负极)

光耦共负极供电,有源输入共正接法 (如于抗源低,输入可以与P+\P-共用正负极)

输入采用双向光耦隔离 触点电源可以不分正负供电

图 6.4 双向光耦型输入接法参考图

表 1 1210 模块引脚符号功能定义表

序号	名称	接线说明	备注
1	P-, P+	工作直流电源,P+为电源正,P-为电源地	直流9V至30V宽电压输入
2	VC, COM	输入触点公共端电源端	
3	I01I12	开关量输入	
4	G	通讯地(与 P-是隔离的)	RS232 与 RS485 共地
5	TX	RS232 发送	RS485 与 RS232 同时存在。
6	RX	RS232 接收	如果采用 RJ45 网络接口,
7	D+	RS485 的 D+端或 <u>A</u> 端	则 RS485 与 RS232 不能用
8	D-	RS485 的 D-端或 B 端	
9	NO	继电器常开端	DO01-DO10第1至10号继
10	СМ	继电器常固定端引脚	电器

7、产品通讯协议

如下所有命令都是以地址为01,波特率代码06(9600bps)来举例说明;

7.1 读继电器开关量输出状态命令(01功能码)

A: 命令发送说明

从设备地址	功能码	输入位起	始地址	读取输入位长度		CRC-L	CRC-H
01H	01H	00Н	00Н	ООН	10H	3DH	С6Н

说明: 起始寄存器地址 0000H 存放 1 号继电器输出状态信息,连续 32 个信息;

B: 返回数据

从设备地址	功能码	返回数据字节	读取的位数	CRC-L	CRC-H
01Н	01H	02Н	2 个字节代表 16 位	校验码	校验码

举例返回数据: 01 01 02 07 00 BB CC。其中 07 00 代表 16 路继电器输出状态信息, 读取的数据 "07 00", 转换成二进制数为 "0000 0111 0000 0000",从左至右分别对应 16 路数字量输出信号 Do08-Do01,Do16-Do09 的状态。(此模块只有 12 路,常数为 0)

7.2 读开关量输入命令(02功能码,按位读)

A: 命令发送说明

从设备地址	功能码	起始寄存	器地址	读取输入位长度		CRC-L	CRC-H
01Н	02H	00Н	00Н	ООН	20H	F1H	D2H

说明:起始寄存器地址 0000H 存放 1 号开关量信息,连续 32 个开关量信息;通过修改起始寄存器地址与读取长度可以读取指定的开关量的信息。

B: 返回数据

从设备地址	功能码	返回数据字节	数据	CRC-L	CRC-H
01Н	02Н	04H	4 个字节代表 32 位	校验码	校验码

举 例 返 回 数 据 :01 02 04 02 00 00 00 xx xx , 其 中 02 00 00 00 代 表 32 路 Di08-Di01,Di16-Di09,Di24-Di17,Di32-Di25 开关量输入状态。转换成二进制为: 0010 0000 0000 0000 ,表示 Di02 路有输入,其它无输入. (此模块只有 16 路, 17 至 32 路常读 0)

7.3 读保持寄存器命令(03功能码)

A: 命令发送说明

从设备地址	功能码	起始寄存		读取寄存器数量		CRC-L	CRC-H
01H	03H	00Н	00Н	00Н	04H	F1H	D2H

说明:起始寄存器地址 0000H,读取连续的 4 个寄存器信息(一次最多读 64 个)。

B: 返回数据

<i>り</i>	人设备地址	功能码	返回数据字节	数据	CRC-L	CRC-H
	01Н	03Н	08Н	8 个字节,每 2 个字节 表示一个寄存器值, 高位在前,低位在后	校验码	校验码

7.4 读开关量输入命令(04功能码,字节读)

A: 命令发送说明

从设备地址	功能码	起始寄存	器地址	地址 读取输入位长		CRC-L	CRC-H
01H	04H	00Н	00Н	00Н	20H	F1H	D2H

说明:起始寄存器地址 0000H 存放 1 号开关量信息,连续 32 个开关量信息;通过修改起始寄存器地址与读取长度可以读取指定的开关量的信息。

B: 返回数据

从设备地址	功能码	返回数据字节	数据	CRC-L	CRC-H
01H	04H	40H	64 个字节开关量信息	校验码	校验码

举例返回数据:01 04 40 00 01 0

7.5 继电器输出控制命令:

A、多个继电器控制发送命令举例(多路同步控制继电器吸合):

从设备 地址	功能 码	起始地	也址			写入字 节长度		数据(4 继电器	于 11,0	2 个	CRC-L	CRC-H
01H	0FH	00Н	00Н	00Н	20H	04H	03	00	00	00	C4H	ССН

返回数据:

从设备地址	功能码	起始	地址	寄存器的数据长度		CRC-L	CRC-H
01Н	0FH	00Н	00Н	ООН	20Н	54H	13H

B、单个继电器控制发送命令举例:

(1)1号继电器吸合:

从设备地址	功能码	寄存器地址		写入数据		CRC-L	CRC-H
01H	05Н	ООН	ООН	FFH	00Н	8CH	ЗАН

(2)1号继电器断开:

从设备地址	功能码	寄存器地址		写)	\数据	CRC-L	CRC-H
01Н	05Н	00Н	00Н	ООН	00Н	CDH	САН

1-32 路继电器对应的输出寄存器地址为 0000H-001FH 寄存器, 其中写入数据 FF00H 时代表断电器吸合, 写入 0000 数据, 代表继电器继开.(此模块只有 **16** 路,**17** 至 **32** 路无任何动作)

7.6 配置地址与波特率、继电器输出方式、产品版本号举例(产品地址默认为1;波特率出厂默认为9600):

A: 地址与波特率寄存器定义表

寄存器地址(Hex)	保持寄存器内容	寄存器个数	寄存器状态	数据范围
0000Н000СН	继电器输出方式	12	读/写	设置 1-12 路继电器输出功能: 0000继电器常闭常开输出 0001继电器 0.5HZ 闪动 0002继电器输出 1 秒脉冲
0050Н	地址	1	读/写	地址(0-254)(默认 01) 如果板端拨码开关第 6 位为 ON (1) 状态,则产品用此寄存器 地址;如果为 0 状态,则由拨码 开关第 5 至 1 位(对应二进制 bit4 至 bit0 位)决定地址。

0051H	波特率	1	读/写	0000 设置波特率-115200bps
				0001 设置波特率-9600bps(默认)
				0002 设置波特率-19200bps
				0003 设置波特率-38400bps
				0004 设置波特率-2400bps
				0005 设置波特率-4800bps
				0006 设置波特率-9600bps
				0007 设置波特率-19200bps
				0008 设置波特率-38400bps
				0009 设置波特率-57600bps
				000A 设置波特率-115200bps
0052H	寄偶校验	1	读/写	0000 无校验, 1 个停止位(默认)
				0001 寄校验, 1 个停止位
				0002 偶校验, 1 个停止位
				0003 无校验, 2 个停止位
				0004 寄校验, 2 个停止位
				0005 偶校验, 2 个停止位
0055H	模块名称高	1	读/写	默认:3132H
0056Н	模块名称中	1	读/写	默认:3132H
0057H	模块名称低	1	读/写	默认:2120H
	继电器延时释			此功能须对应继电器的输出方
0064H0070H	放控制输出	12	读/写	式寄存器(0000H000H)设为
	从入了工 印1 相1 山			0时,才有效

B: 地址修改命令发送说明 (地址由原来的 01 号变为 02 号)

从设备地址	功能码	起始寄存	器地址	写入寄			CRC-H
01H	06Н	00Н	50H	00Н	02Н	08Н	1 AH

说明:0002 为写入的新地址, 地址范围为 0001-00FE;

C: 波特率修改命令发送说明 (改为 19200bps)

从设备地址	功能码	起始寄存得	器地址	写入寄	存器的数据	CRC-L	CRC-H
01Н	06Н	00Н	51H	00Н	02Н	59Н	DAH

说明:0002 为 19200 波特率代码:

- D、单个继电器控制**延时自动释放**发送命令举例:
 - (1)1号继电器闭合1秒种后自动断开命令:

从设备地址	功能码	寄存器地址		写)	\数据	CRC-L	CRC-H
01H	06Н	00Н	64H	ООН	OAH	48H	12H

注: 写入数据为继电器闭合时间 1 代表 0.1 秒,上述命令写入 10 代表闭合 1 秒钟后自动释放;

(2)2号继电器闭合2秒种后自动断开命令:

从设备地址	功能码	寄存器地址		写)	$\rightarrow \land x \land x \mapsto$		CRC-H
01Н	06Н	00Н	65H	ООН	14H	99Н	DAH

注: 写入数据为继电器闭合时间 1 代表 0.1 秒,上述命令写入 20 代表闭合 2 秒钟后自动释放;

其它路继电器控制方法同上,1-10路继电器脉冲输出对应的控制寄存器地址为0064H-006DH(即十进制地址为100-109号),写入的数据1代表0.1秒,最大值为255,即延时最长为25.5秒,延时断开功能必须在对应继电器输出方式寄存器(0000-001F)设为0时,才能进行,否则按输出方式寄存器设定的输出;

7.7 连续修改多个保持寄存器命令:

A、连续修改多个保持寄存器发送命令举例(最多一次修改64个):

从设备 地址	功能 码	起始地	也址	改写寄存器 个数		写入字 节长度	• • • • • • • • • • • • • • • • • • • •				CRC-L	CRC-H
01H	10H	00Н	00Н	00Н	02H	04H	00	00	00	02	72H	6ЕН

返回数据:

从设备地址	功能码	起始	地址	改写寄存	字器个数	CRC-L	CRC-H
01Н	10H	ООН	00Н	ООН	02Н	41H	С8Н

改写保持寄存器 0000 与 0001,对应把 DO01 输出改成继电器常闭常开输出,把 DO02 输出改成 1 秒脉冲输出。

版本: V1.0 2020.06.24 更新

V2.0 2020.12.17 更新

V2.1 2020.12.27 更新

网址: http://www.szzczh.cn